HW3
任务分析
- 本次作业要求对food11进行分类 
- 作业的分数细则如下: 
- Simple: 0.50099 
- Medium: 0.73207 - Training augmentation + longer training 
- Strong: 0.81872 - Training augmentation + model design + extended training (+ cross-validation + ensemble) 
- Boss: 0.88446 - Training augmentation + model design + test-time augmentation + extended training (+ cross-validation + ensemble) 
完成细节
模型
- resnet18,按照李沐动手学深度学习教程搭建。 
- resnet,用了两层残差块,然后接全连接层 
训练设置
- resnet中采用StepLRScheduler,训练100 epochs,前50轮学习率为3e-4,后50轮为3e-5 
- resnet18采用余弦退火策略,200epochs,T_MAX设置为200,学习率按余弦从3e-4减小到3e-7 
- 均采用5折交叉验证 
- resnet18只训练出四个模型 
- batch_size都设置为64 
- 采用FocalLoss,根据resnet对各个类别的分类情况调整了alpha系数 
结果
- resnet达到了StrongLine 
- resnet18达到了BossLine 
